Akt/eNOS signaling pathway mediates inhibition of endothelial progenitor cells by palmitate-induced ceramide.

نویسندگان

  • Minghuan Fu
  • Zhihong Li
  • Tao Tan
  • Weixin Guo
  • Nanzi Xie
  • Qing Liu
  • Hua Zhu
  • Xiaoyun Xie
  • Han Lei
چکیده

Palmitate (PA) impairs endothelial progenitor cells (EPCs). However, the molecular mechanism underlying the suppressive function of PA remains largely unknown. Ceramide, a free fatty acid metabolite, mediates multiple cellular signals. We hypothesized that ceramide acts as an intermediate molecule to mediate inhibition of EPCs by PA. We first demonstrated that PA could inhibit the attachment, migration, and tube formation of EPCs through suppression of the Akt/endothelial nitric oxide (NO) synthase (eNOS) signaling pathway. In addition, we observed that PA could induce ceramide accumulation in EPCs. To test whether the accumulation of ceramide causes EPC dysfunction, the ceramide synthesis inhibitors myriocin and fumonisin B1 were used. We that found both inhibitors could effectively abolish PA-mediated EPC inhibition. Furthermore, the ceramide deacylation inhibitor N-oleoylethanolamine could augment the inhibitory effect of PA on EPCs, indicating that it is ceramide, not its metabolites, that mediates the suppression of EPCs by PA. We have previously shown that Akt/eNOS phosphorylation was reduced after PA treatment, which, in turn, hampered the normal bioavailability of NO, leading to impaired functions of EPCs. To test the role for ceramide in this process, a clinically used NO donor, sodium nitroprusside, was used. We found that sodium nitroprusside could rescue the suppressive effects of ceramide on EPCs, suggesting that ceramide-mediated EPC inhibition might be through reduction of NO production. Taken together, our findings indicated that ceramide-induced reduction of NO might be the molecular mechanism for PA-mediated EPC inhibition; thus, targeting either ceramide or NO production might be an effective means for improvement of EPC functions in diseases.

منابع مشابه

Ang (1–7) Protects Islet Endothelial Cells from Palmitate-Induced Apoptosis by AKT, eNOS, p38 MAPK, and JNK Pathways

This study aimed to explore the effect of angiotensin (1-7) (Ang (1-7)) on palmitate-induced apoptosis in islet endothelial cells and the mechanism of action. MS-1 cells were treated with palmitate in the presence or absence of Ang (1-7). The percentage of apoptotic cells was determined by DNA fragmentation and flow cytometry. Reactive oxygen species (ROS) production was measured using a Reacti...

متن کامل

Ceramide Mediates Vascular Dysfunction in Diet-Induced Obesity by PP2A-Mediated Dephosphorylation of the eNOS-Akt Complex

Vascular dysfunction that accompanies obesity and insulin resistance may be mediated by lipid metabolites. We sought to determine if vascular ceramide leads to arterial dysfunction and to elucidate the underlying mechanisms. Pharmacological inhibition of de novo ceramide synthesis, using the Ser palmitoyl transferase inhibitor myriocin, and heterozygous deletion of dihydroceramide desaturase pr...

متن کامل

Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway

Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...

متن کامل

The Role of Protein Kinase B Signaling Pathway in Anti-cancer Effect of Rolipram on Glioblastoma Multiforme: An In Vitro Study

Introduction: The mechanism of putative cytotoxicity of 4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidone (rolipram), a specific phosphodiesterase-4 (PDE4) inhibitor, on glioblastoma multiforme (GBM) is almost unknown. This study aimed to investigate the role of protein kinase B (Akt) pathway in the cytotoxic effect of rolipram on human GBM U87 MG cell line and tumor-initiating cells (TICs) ...

متن کامل

EPC-Derived Microvesicles Protect Cardiomyocytes from Ang II-Induced Hypertrophy and Apoptosis

Cell-released microvesicles (MVs) represent a novel way of cell-to-cell communication. Previous evidence indicates that endothelial progenitor cells (EPCs)-derived MVs can modulate endothelial cell survival and proliferation. In this study, we evaluated whether EPC-MVs protect cardiomyocytes (CMs) against angiotensin II (Ang II)-induced hypertrophy and apoptosis. The H9c2 CMs were exposed to An...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 308 1  شماره 

صفحات  -

تاریخ انتشار 2015